I suggest that morphogenetic fields work by imposing patterns on otherwise random or indeterminate activity. Morphogenetic fields are not fixed forever, but evolve. The fields of Afghan hounds and sheepdogs have become different from those of their common ancestors, wolves.
How are these fields inherited? I propose that they are transmitted from past members of the species through a kind of non-local resonance, which I call “morphic resonance.” The morphic fields of social groups connect group members even when they are many miles apart, and provide channels of communication through which members can stay in touch—even at a distance. These fields also coordinate the behavior of individuals within social groups—for example the behavior of fish in schools, or birds in flocks. [iii]
Morphic resonance involves the influence of like upon like, the influence of patterns of activity on subsequent similar patterns of activity. The greater the degree of similarity, the greater the influence of morphic resonance.
Morphic resonance also gives an inherent memory to fields at all levels of complexity. Any given morphic system, say a squirrel, “tunes in” to previous similar systems, in this case previous squirrels of its species. Through this process each individual squirrel draws upon, and in turn contributes to, a collective or pooled memory of its kind. In the human realm, this kind of collective memory corresponds to what the psychologist C.G. Jung called the “collective unconscious.”
Morphic resonance should be detectable in the realms of physics, chemistry, biology, animal behavior, psychology and the social sciences. But long-established systems, such as zinc atoms, quartz crystals and insulin molecules, are governed by such strong morphic fields, with such deep grooves of habit, that little change can be observed. They behave as if they are governed by fixed laws.
By contrast, new systems should show an increasing tendency to come into being the more often they are repeated. They happen more readily as time goes on. For example, when a new chemical compound is synthesized by research chemists and crystallized, it may take a long time for the crystal to form for the first time. There is no pre-existing morphic field for the lattice structure. But when the first crystals form, they will make it easier for similar crystals to appear anywhere in the world. The more often the compound is crystallized, the easier it should be to crystallize.
In fact, new compounds do indeed tend to crystallize more easily the more often they are made. Chemists usually explain this effect in terms of crystal “seeds” from the new crystals spreading around the world as invisible dust particles in the air, or chemists learning from others how to do it. But the hypothesis of morphic fields predicts that this should happen anyway under standardized conditions, even if dust particles are filtered out of the air.
The easiest way to test for morphic fields directly is to work with societies of organisms. Individual animals can be separated in such a way that they cannot communicate with each other by normal sensory means. If information still travels between them, it implies the existence of interconnections of the kind provided by morphic fields. The transfer of information through morphic fields could help provide an explanation for telepathy, which typically takes places between members of groups who share social or emotional bonds.
When I started looking for evidence of field-like connections between members of social groups, I found that I was moving into realms very little understood by science. For example, no one knows how societies of termites are coordinated in such a way that these small, blind insects can build complex nests with an intricate internal architecture. [iv] No one understands how flocks of birds or schools of fish can change direction so quickly without the individuals bumping into each other.[v] They’re not all looking at the next bird or fish and deciding what to do; research has shown that their reactions are too quick for that. Rather, they’re drawing upon information they are each contributing to the morphic field.
No comments yet.